Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Temperature-dependent quantum efficiency analysis of graded-gap Cu(In,Ga)Se2 solar cells

Identifieur interne : 002361 ( Main/Repository ); précédent : 002360; suivant : 002362

Temperature-dependent quantum efficiency analysis of graded-gap Cu(In,Ga)Se2 solar cells

Auteurs : RBID : Pascal:11-0406207

Descripteurs français

English descriptors

Abstract

Despite the high solar cell efficiencies achieved with Cu(In,Ga)Se2 (CIGS) absorbers, key parameters such as the carrier diffusion length and recombination lifetime are still under investigation. Here, we extract lifetime and diffusion length from temperature-dependent internal quantum efficiency (IQET) spectra of state of the art high efficiency CIGS solar cells. Two-parameter fits to the measured IQE curves using a model for double-graded gap solar cells show very good agreement in the studied temperature range T=146-293 K, allowing the extraction of the electron recombination lifetime in the absorber and the collection probability in the front region of the cell. The obtained results agree with current literature values obtained by other characterization techniques. Furthermore, the temperature dependence of the recombination lifetime is explained by Shockley-Read-Hall recombination through a single bulk defect level with an activation energy of 200 meV.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:11-0406207

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Temperature-dependent quantum efficiency analysis of graded-gap Cu(In,Ga)Se
<sub>2</sub>
solar cells</title>
<author>
<name sortKey="Troviano, M" uniqKey="Troviano M">M. Troviano</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Departamento de Electrotecnia, Universidad Nacional del Comahue-CONICET, Buenos Aires 1400</s1>
<s2>8300 Neuquén</s2>
<s3>ARG</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Argentine</country>
<wicri:noRegion>8300 Neuquén</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Taretto, K" uniqKey="Taretto K">K. Taretto</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Departamento de Electrotecnia, Universidad Nacional del Comahue-CONICET, Buenos Aires 1400</s1>
<s2>8300 Neuquén</s2>
<s3>ARG</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Argentine</country>
<wicri:noRegion>8300 Neuquén</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">11-0406207</idno>
<date when="2011">2011</date>
<idno type="stanalyst">PASCAL 11-0406207 INIST</idno>
<idno type="RBID">Pascal:11-0406207</idno>
<idno type="wicri:Area/Main/Corpus">002987</idno>
<idno type="wicri:Area/Main/Repository">002361</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0927-0248</idno>
<title level="j" type="abbreviated">Sol. energy mater. sol. cells</title>
<title level="j" type="main">Solar energy materials and solar cells</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Absorbent material</term>
<term>Activation energy</term>
<term>Charge carrier recombination</term>
<term>Conversion rate</term>
<term>Copper selenides</term>
<term>Defect level</term>
<term>Diffusion length</term>
<term>Durability</term>
<term>Gallium phosphide solar cells</term>
<term>Gallium selenides</term>
<term>High efficiency</term>
<term>Indium selenides</term>
<term>Modeling</term>
<term>Quantum yield</term>
<term>Quaternary compound</term>
<term>Solar cell</term>
<term>State of the art</term>
<term>Temperature dependence</term>
<term>Temperature effect</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Effet température</term>
<term>Dépendance température</term>
<term>Rendement quantique</term>
<term>Cellule solaire</term>
<term>Rendement élevé</term>
<term>Taux conversion</term>
<term>Matériau absorbant</term>
<term>Longueur diffusion</term>
<term>Durabilité</term>
<term>Etat actuel</term>
<term>Cellule solaire gallium phosphure</term>
<term>Recombinaison porteur charge</term>
<term>Niveau défaut</term>
<term>Energie activation</term>
<term>Modélisation</term>
<term>Séléniure de cuivre</term>
<term>Séléniure de gallium</term>
<term>Séléniure d'indium</term>
<term>Composé quaternaire</term>
<term>Cu(In,Ga)Se2</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Despite the high solar cell efficiencies achieved with Cu(In,Ga)Se
<sub>2</sub>
(CIGS) absorbers, key parameters such as the carrier diffusion length and recombination lifetime are still under investigation. Here, we extract lifetime and diffusion length from temperature-dependent internal quantum efficiency (IQET) spectra of state of the art high efficiency CIGS solar cells. Two-parameter fits to the measured IQE curves using a model for double-graded gap solar cells show very good agreement in the studied temperature range T=146-293 K, allowing the extraction of the electron recombination lifetime in the absorber and the collection probability in the front region of the cell. The obtained results agree with current literature values obtained by other characterization techniques. Furthermore, the temperature dependence of the recombination lifetime is explained by Shockley-Read-Hall recombination through a single bulk defect level with an activation energy of 200 meV.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0927-0248</s0>
</fA01>
<fA03 i2="1">
<s0>Sol. energy mater. sol. cells</s0>
</fA03>
<fA05>
<s2>95</s2>
</fA05>
<fA06>
<s2>11</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Temperature-dependent quantum efficiency analysis of graded-gap Cu(In,Ga)Se
<sub>2</sub>
solar cells</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>TROVIANO (M.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>TARETTO (K.)</s1>
</fA11>
<fA14 i1="01">
<s1>Departamento de Electrotecnia, Universidad Nacional del Comahue-CONICET, Buenos Aires 1400</s1>
<s2>8300 Neuquén</s2>
<s3>ARG</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</fA14>
<fA20>
<s1>3081-3086</s1>
</fA20>
<fA21>
<s1>2011</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>18016</s2>
<s5>354000191187110210</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2011 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>34 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>11-0406207</s0>
</fA47>
<fA60>
<s1>P</s1>
<s3>PR</s3>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Solar energy materials and solar cells</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Despite the high solar cell efficiencies achieved with Cu(In,Ga)Se
<sub>2</sub>
(CIGS) absorbers, key parameters such as the carrier diffusion length and recombination lifetime are still under investigation. Here, we extract lifetime and diffusion length from temperature-dependent internal quantum efficiency (IQET) spectra of state of the art high efficiency CIGS solar cells. Two-parameter fits to the measured IQE curves using a model for double-graded gap solar cells show very good agreement in the studied temperature range T=146-293 K, allowing the extraction of the electron recombination lifetime in the absorber and the collection probability in the front region of the cell. The obtained results agree with current literature values obtained by other characterization techniques. Furthermore, the temperature dependence of the recombination lifetime is explained by Shockley-Read-Hall recombination through a single bulk defect level with an activation energy of 200 meV.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D06C02D1</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001D05I03D</s0>
</fC02>
<fC02 i1="03" i2="X">
<s0>230</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Effet température</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Temperature effect</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Efecto temperatura</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Dépendance température</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Temperature dependence</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Rendement quantique</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Quantum yield</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Rendimiento quántico</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Cellule solaire</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Solar cell</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Célula solar</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Rendement élevé</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>High efficiency</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Rendimiento elevado</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Taux conversion</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Conversion rate</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Factor conversión</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Matériau absorbant</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Absorbent material</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Material absorbente</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Longueur diffusion</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Diffusion length</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Longitud difusión</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Durabilité</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Durability</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Durabilidad</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Etat actuel</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>State of the art</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Estado actual</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Cellule solaire gallium phosphure</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Gallium phosphide solar cells</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Recombinaison porteur charge</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Charge carrier recombination</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Recombinación portador carga</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Niveau défaut</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Defect level</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Energie activation</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Activation energy</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Energía activación</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Modélisation</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Modeling</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Modelización</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Séléniure de cuivre</s0>
<s2>NK</s2>
<s5>22</s5>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Copper selenides</s0>
<s2>NK</s2>
<s5>22</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Séléniure de gallium</s0>
<s2>NK</s2>
<s5>23</s5>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Gallium selenides</s0>
<s2>NK</s2>
<s5>23</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>Séléniure d'indium</s0>
<s2>NK</s2>
<s5>24</s5>
</fC03>
<fC03 i1="18" i2="3" l="ENG">
<s0>Indium selenides</s0>
<s2>NK</s2>
<s5>24</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>Composé quaternaire</s0>
<s5>25</s5>
</fC03>
<fC03 i1="19" i2="X" l="ENG">
<s0>Quaternary compound</s0>
<s5>25</s5>
</fC03>
<fC03 i1="19" i2="X" l="SPA">
<s0>Compuesto cuaternario</s0>
<s5>25</s5>
</fC03>
<fC03 i1="20" i2="X" l="FRE">
<s0>Cu(In,Ga)Se2</s0>
<s4>INC</s4>
<s5>82</s5>
</fC03>
<fN21>
<s1>276</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002361 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 002361 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:11-0406207
   |texte=   Temperature-dependent quantum efficiency analysis of graded-gap Cu(In,Ga)Se2 solar cells
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024